
Krugle Enterprise SCMI Integration Guide

© 2008 Krugle, Inc. All Rights Reserved

V 2.0.1

 Contents

Introduction 1

SCMI Concepts 2
Krugle Enterprise Operation Overview 2
SCMI Operation Overview 2

SCMI Deployment and Confi guration - Implementation 4
SCMI Deployment and confi guration Requirements . . 4
SCMI Example - Linux Filesystem 5

SCMI Command Reference 7
Files command 7
HISTORY command 8
FILE RETRIEVAL COMPLETE notifi cation 10
DELETE notifi cation 11

SCMI - XML Schema 12

SCMI Error Handling 15
Error handling 15
Error Response 16

Introduction
This document describes the Krugle SCM Integration (SCMI) interface. An SCMI application manages the continuous
integration between Krugle Enterprise and a code / data repository. This document summarizes the SCMI architecture
as well as the application programming interface of the SCMI software. This document is designed for anyone evaluating
Krugle SCMI integration as well as for developers involved in the SCMI integration effort.

Krugle Enterprise SCMI Integration Guide | 1

SCMI Concepts

Krugle Enterprise Operation Overview

Krugle Enterprise software runs on a secure appliance inside of your organization’s fi rewall. Krugle Enterprise maintains
a comprehensive index of your organization’s source code, code metadata and related documentation. To keep this
information current, Krugle Enterprise periodically “crawls” repositories to collect the most current fi les and data.

During the “crawl” processes for a specifi ed project, Krugle Enterprise must access:

All fi les that have been created or modifi ed since the last indexing process.•

The list of fi les for the specifi ed project that have been deleted since the last indexing process History comments (i.e. •
checkin comments).

There are two mechanisms that Krugle Enterprise uses to get access to code, code metadata and other content:

Direct SCM support - for directly supported SCMs, the connection between Krugle Enterprise and each SCM is •
confi gured and managed completely within the Krugle Enterprise appliance. See the Krugle Enterprise Administration
Guide for more information about using direct SCM support.

SCMI integration - SCMI application software runs outside of the Krugle Enterprise appliance - on your organization’s •
own hardware. If you have special access or management requirements for your SCM or data source, or if you want
to integrate with a data source or SCM not directly supported by Krugle Enterprise, SCMI integration will meet your
needs.

This document describes SCMI software integration mechanism.

SCMI Operation Overview

The SCMI application that you create will allow Krugle Enterprise to access code fi les and history comments from a code
repository of your choice. SCMI software handles fi le/data access requests from Krugle Enterprise and helps ensure that
the correct information is uploaded to Krugle Enterprise.

The following example shows how Krugle Enterprise uses SCMI software to access code fi les and repository comments.
This is a common task performed by Krugle Enterprise when it needs to bring new and updated information (code fi les,
comments) about a project into its index. The process begins when Krugle Enterprise issues a Files request for the latest
fi les to the SCMI application. In subsequent steps, Krugle Enterprise and SCMI exchange information and fi les in an
orderly process. See Figure 1 for a diagram of messaging and fi le exchange between Krugle Enterprise and the SCMI
application.Krugle Enterprise uses the History request to access the SCM comments posted for check - in activity that
occurred between the two most recent checkpoint markers.

Krugle Enterprise sends a 1. Files request to the SCMI application. Note: the protocol, server, port, address and any
necessary credentials used to envoke the SCMI application must fi rst be specifi ed in Krugle’s Project defi nition.

SCMI maps the Krugle Enterprise request into a form that can be handled by the particular SCM / fi le system being 2.
accessed and issues the fi le checkout request to the SCM / fi le system. The SCMI passes a response to the Files
command that includes the result fi le list and a checkpoint token identifying the most version of fi les accessed. Krugle
stores this token to defi ne the “starting point” for the next update.

Krugle Enterprise issues the 3. FilesRetrievalComplete command to notify the SCMI that the Files request was
successfully completed.

2 | Krugle Enterprise SCMI Integration Guide

The calling and return xml for the commands used in the preceding example are included in the SCMI Command
Reference section below.

The SCMI architecture is designed to provide fl exibility in several key areas. Options include:

Repository types - repositories can include SCM systems, document systems, fi le systems and databases. If a
repository can be confi gured to return fi le lists or data as xml, then that repository can be integrated with Krugle Enterprise
through SCMI.

Repository confi guration data - Information needed to access the fi les or records in a particular system (i.e. network
address, path, credentials, access options, etc.) can be stored and managed from the Krugle Enterprise Administration
Console - or from the SCMI application. For the former option, any necessary options are managed through the “SCMI
project parameter” fi eld that is specifi ed, stored and managed by in the Krugle Enterprise project defi nition. Alternatively,
some or all of this information can be stored/accessed on the SCMI host in a manner that is suitable for your organization.

File access - Files to be accessed by KE can be cached by the SCMI or accessed directly from the fi le / record repository.
The technique that you choose must be refl ected in the URLs that are returned from the SCMI in the fi le list. In the
example above, the fi les are cached on the SCMI host (and the URLs that are returned to Krugle Enterprise refer to the
fi le locations on the SCMI host). Another approach would be to specify that fi les / records be accessed directly from the
SCM system, in this case the SCMI is confi gured to return URLs that point directly at the fi les on the SCM system. Both
approaches have advantages, the caching method is generally more versatile, but it also can be more complicated; the
SCMI must maintain some state information to know what resources keep available for download by the KE appliance.
You can choose the approach that best suits your requirements.

Note: When using an SSH connection type or the SCP fi le transfer method on a unix based SCMI host, create a new user
account that: a) is free of startup scripts and b) uses bash as the default shell.

A unique instance of SCMI software is required for each repository type. Multiple instances of a single SCMI script can
be accessed by one or more Krugle Enterprise appliances. Multiple SCMI scripts can be deployed on a single SCMI host
system. The SCMI modules available from Krugle target specifi c source code management systems (such as SVN and
the fi le system) and are written in languages that are easily integrated through http(s) and ssh. Other languages can be
used to implement the SCMI functionality.

Figure 1

Krugle Enterprise SCMI Integration Guide | 3

Fi 1

Krugle Enterprise

Clearcase

UPDATE REQUEST

FILES

File
System

Archives

Custom
SCM**

Customer
Server

Running SCMI SVN

SCMI Deployment and Confi guration - Implementation

The SCMI installation and confi guration process:

Provision the SCMI host with: (i) a supported operating system of your choice, (ii) the scripting tools (i.e. Python, 1.
.net) that will run the SCMI script and (iii) any SCM client software that will be required to access information from the
target SCM.

Transfer the SCMI script onto the SCMI host. The SCMI scripts are located at http://www.krugle.com/products/2.
enterprise_documentation.html.

Modify the SCMI script to call the target data source / SCM system. Write down the location of the script for use in 3.
steps 4 & 5.

Test the SCMI application (see step 4 in the following example). First, verify that the SCMI script can be invoked on 4.
the SCMI host. Next verify that the SCMI script can be invoked over a network, using any required credentials.

In the Krugle Enterprise Administration Console: create a Project that uses this SCMI application as an SCM 5.
repository (See the Krugle Administration Guide Chapter 1 to learn about specifying a project). NOTE: if the SCMI
host (the computer that will run the SCMI script) requires credentialed access, a username/password pair that will
provide access required to run the SCMI script will need to be specifi ed in the Krugle Enterprise defi nition of the SCM
repository.

6. Check the Project Summary page in the Krugle Enterprise Administration Console to verify that the Project from step 5
has crawled correctly, and execute a Krugle client search in the “Code” channel that should produce a result fi le from the
SCMI accessed data.

SCMI Deployment and Confi guration Requirements

A machine designated as the “SCMI Host” (NOTE: It is not required that it is dedicated to Krugle)•

Specifi cation for SCMI Host:•

OS – Windows, Linux, Unix, Mac OSX.•

RAM – 2G, with dual core processor.•

Disk space – Minimum 30% greater than size of total code base to be crawled, if caching required •
(caching is not required for Clearcase dynamic views and Synergy).

Python v2.3 or greater installation on SCMI Host (assuming SCMI scripts are used as is).•

Network Bandwidth – SCMI Host connected via minimum 100 MB ethernet to Krugle appliance and SCM server.•

Access via ssh or http(s) from Krugle appliance to SCMI Host.•

Username/password on SCMI Host that is required by Krugle appliance to run SCMI scripts.•

SCM client installation on SCMI Host, if applicable (required for Clearcase).•

Username/password required by SCM client to access SCM server and corresponding SCM user license, if •
applicable.

4 | Krugle Enterprise SCMI Integration Guide

Krugle Enterprise SCMI Integration Guide | 5

SCMI Example - Linux Filesystem
This section provides a detailed, step-by-step example of how SCMI is used to integrate with Krugle Enterprise through
SSH. This example uses Python to implement an SCMI integration to the Linux fi le system. This script allows Krugle
Enterprise to crawl and index all fi les at (and beneath) a specifi ed root directory. The script to perform this integration is
available from Krugle, and as the instructions below show, this sample script requires only several edits and confi guration
steps to be operational.

NOTE: SCMI can be used to integrate Krugle Enterprise with other SCM systems, on other operating systems (Windows),
using different scripting languages (Perl, .net, etc.) and different communication protocols. This example illustrates just
one possible confi guration option.

1. Verify SCMI host confi guration (example: linux).

1a. Verify that Python 2.3 (or later) is confi gured on the SCMI host. To test this, execute a shell command that will confi rm
 the presence of python - e.g. :

 > python -V

1c. Verify that SSH is available on the SCMI host. Execute a test command such as the following:

 > ps ax |grep sshd

2. Access the SCMI template script.

2a. Navigate to http://www.krugle.com/products/enterprise_documentation.html

2b. Click the SCMI download link; this will download a compressed folder archive Krugle - SCMI - Examples to your
 computer.

2c. Unpack the Krugle-SCMI-Examples archive and place the contents of the python folder in a directory; note the name
 for use in subsequent steps, e.g.

 /home/krugle_scmi/scripts

2d. Make sure that the SCMI script is executable on the SCMI host; the following command should return to the shell
 without error:

 > chmod u+x gateway-fi lesystem.py

3. Edit gateway-fi lesystem.py

3a. Enter the host name of the SCMI host (italicized in the sample line below). If the SCMI host has a static IP address,
 you can enter the address or a domain name that can be resolved to an IP address on the network that the SCMI
 host is connected to.

 “host” : “your_host_name”

3b. Enter the root location of the SCMI working directory. Using the locations from 2c above

 “rootScmiPath” : /home/krugle_scmi

3c. Save changes to gateway-fi lesystem.py

4. Verify proper access and operation of the SCMI script.

 On the SCMI host machine, in the scripts directory (from step 2c above) open test-fi les-req.xml and type in:

<?xml version=”1.0” encoding=”UTF-8”?>

<fi les-request version=”1”>

 <project>

 <serverUid>default</serverUid>

 <projectUid>krugle-fs-test</projectUid>

 <location>/bin/</location>

 <params></params>

 </project>

</fi les-request>

Save the edits to the fi le and test the SCMI script from the shell:

 > cat test-fi les-req.xml | ./gateway-fi lesystem.py

The stdout response should be XML formatted in a fi les-response.

Once it is verifi ed that the SCMI script operates properly from the SCMI host, test the script over the network. First copy
the test-fi les-req.xml over to another machine, and then from that machine:

 > cat test-fi les-req.xml | ssh <user>@<host> /absolute/path/to/executable

5. Identify the root directory of code fi les that you want crawled by Krugle Enterprise

 For this example we assume that the code is located:

 /code_fi les

6. Setup a Project in Krugle Enterprise to crawl and index the code fi les

6a. Sign in to the Krugle Enterprise Hub.

6b. Create a new project. Click the projects tab. Click “Add New Project”. Add required project metadata.

6 | Krugle Enterprise SCMI Integration Guide

6c. Under the “Add SCM location to project defi nition” section, select create new repository from the dropdown list.

6d. Choose SCMI from the SCM type and enter the host name that was specifi ed in step 3a above. Click Next.

6e. On the SCMI detail screen, provide a name for the Repository; specify the path to the SCMI working directory - for
 this example, this is the path specifi ed in step 3b above. Specify the connection type as SSH. Click Save.

6f. In the “Add SCM location to project defi nition” section, specify the path location from step 4 above. Click Add.

This completes the setup. Krugle Enterprise will crawl and index the code located at the path specifi ed in step 4. Within
several minutes, the code will be available for client searching.

SCMI Command Reference

Files command

This request is sent by the Krugle Enterprise to synchronize itself with the latest fi les available on the SCMI. Depending
on if lastFilesCheckpoint is present in the request, this comment can represent either a request for all the fi les, or just
the changes since the given lastFilesCheckpoint token. In SVN terms, sending a request without a lastFilesCheckpoint
is asking for a “checkout”, while including the lastFilesCheckpoint is asking for an “update” from that point.

A checkpoint is an arbitrary string chosen by the SCMI to represent a point in time. The SCMI returns a checkpoint with
the Files response, expecting the KE to store it and send it back with the next Files request (as well as next History
request, see next section). For example in SVN you could use the repository revision for the checkpoint, but in CVS you
would want to use the date, because in CVS revisions are fi le specifi c. Using the lastFilesCheckpoint fi eld correctly will
make the fi les update process effi cient because generally less fi les will have to be retrieved. Although the fi eld is required
in the fi les response, it can be set to anything and ignored, if the SCMI author wishes.

Use UTF-8 encoding for all XML communications between Krugle Enterprise and the SCMI script.
File URLs sent from the SCMI to Krugle (http, https or scp) must be URL encoded.

Call
XML Comments

<?xml version=”1.0” encoding=”UTF-8”?>
<fi les-request version=”1”>
 <project>
 <serverUid>Server1</serverUid>
 <projectUid>Project1</projectUid>
 <location>svn://svn.host.net/repo</location>
 <params>u$3rn4m3 p4$$w0rd</params>
 </project>
 <lastFilesCheckpoint>2311</lastFilesCheckpoint>
</fi les-request>

The “serverUid” element will contain an identifi er
unique to each KE Appliance.

The “projectUid” element will contain a string which
identifi es this project uniquely in the scope of the KE
Appliance.

The “location” is the user defi ned text provided as part
of the KE Appliances’s project confi guration. It should
give a path to the resources the SCMI will process.

The “params” is another string which is defi ned by
the user in the project confi guration. It should specify
any information needed in addition to the location, like
credentials.

The “lastFilesCheckpoint” is the token that was
returned as part of the last update response. If this
token is omitted the call, the response will include the
full list of current fi les.

Krugle Enterprise SCMI Integration Guide | 7

8 | Krugle Enterprise SCMI Integration Guide

Response
XML Comments

<?xml version=”1.0” encoding=”UTF-8”?>
<fi les-response version=”1”>
 <project>
 <serverUid>Server1</serverUid>
 <projectUid>Project1</projectUid>
 <location>svn://svn.host.net/repo</location>
 <params>u$3rn4m3 p4$$w0rd</params>
 </project>
 <fi les>
 <fi le>
 <action>ADDED</action>
 <name>/path/to/fi le.txt</name>
 <url>http://server:port/root/path/to/fi le.
txt</url>
 <md5>d41d8cd98f00b204e9800998ecf8427e</md5>
 <revision>345</revision>
 </fi le>
 <fi le>
 ...
 </fi le>
 </fi les>
 <fi lesCheckpoint>2601</fi lesCheckpoint>
</fi les-response>

Zero or one “fi les” elements may be present.

Zero or more “fi le” elements may be present in
each “fi les” elements.

The “action” must be “Added”, “Removed” or
“Updated”.

The “name” element contains the path of the fi le
relative to the project root.

The “URL” element contains the full URL that can
be used to retrieve the fi le / record. Not present
for fi les that are being REMOVED. Examples of
well formed URLs: “http://server1:80/java/com/
krugle/helper/save.txt” or “ftp://public:password@
ftp1:21/java/com/krugle/helper/save.txt” or “SSH://
server:port/command java/com/krugle/helper/
save.txt”

OPTIONAL: If present, the “revision” element
contains a revision string which will be added to
the index.

OPTIONAL: If present, the “md5” element
contains the MD5 hash of the fi le contents, but the
md5 element can be omitted.

The “fi lesCheckpoint” is the token which the KE
will store and send back to the SCMI in the next
fi les-request in the lastFilesCheckpoint.

HISTORY command

The history request asks for the SCM history, both the total fi le changes and any comments associated with
these changes, from the SCMI. The request always includes a lastFilesCheckpoint and may also include a
lastHistoryCheckpoint. These checkpoints specify the bounds of the request. If the lastHistoryCheckpoint element is
missing, the response should be composed of all the SCM history from the start of the project up to and including the
lastFilesCheckpoint. If the lastHistoryCheckpoint is present, the history response will include the history from just after the
lastHistoryCheckpoint up to and including the lastFilesCheckpoint.

The lastFilesCheckpoint is the token returned to Krugle Enterprise during the last fi les response, the lastHistoryCheckpoint
is the checkpoint token returned to Krugle Enterprise in the last history response, if one has been made for this project.

The response provides a list of changeSet objects, where a changeSet represents a batch of fi le changes. Each
changeSet has an id fi eld which can be any string to uniquely identifi es the changeSet in the context of the project in
Krugle Enterprise. In SVN this would be a revision. Each changeSet has a date and author fi eld, which would be the date
and author of the revision used for the id fi eld. Inside of each changeSet is a list of fi le elements which will enumerate
every fi le change that occurred in the revision specifi ed by the id element. Things are more complicated for a SCM such
as CVS which does not have a concept of changeSets, but instead gives every fi le its own revision count. For CVS you
could either create a changeSet for every single fi le change, or better yet group comments together that were made at the
same time by the same author. The id of the changeSet in this case should be the commit number, which isn’t tracked by
CVS but could be inferred during this comment grouping process.

Krugle Enterprise SCMI Integration Guide | 9

Use UTF-8 encoding for all XML communications between Krugle Enterprise and the SCMI script.

Call
XML Comments

<?xml version=”1.0” encoding=”UTF-8”?>
<history-request version=”1”>
 <project>
 <serverUid>Server1</serverUid>
 <projectUid>Project1</projectUid>
 <location>svn://svn.host.net/repo</location>
 <params>u$3rn4m3 p4$$w0rd</params>
 </project>
 <lastHistoryCheckpoint>2311</lastHistoryCheckpoint>
 <lastFilesCheckpoint>2601</lastFilesCheckpoint>
</history-request>

The “lastHistoryCheckpoint” is equal to the
historyCheckpoint returned from the SCMI on the
last history response for this project, if one has
been sent yet.

The “lastFilesCheckpoint” is equal to the
fi lesCheckpoint token returned from the SCMI on
the last fi les response from this project.

Response
XML Comments

<?xml version=”1.0” encoding=”UTF-8”?>
<history-response version=”1”>
 <project>
 <serverUid>Server1</serverUid>
 <projectUid>Project1</projectUid>
 <location>svn://svn.host.net/repo</location>
 <params>u$3rn4m3 p4$$w0rd</params>
 </project>
 <changeSets>
 <changeSet>
 <id>2312</id>
 <date>2001-10-26T21:32:52+02:00</date>
 <comment>check-in comment</comment>
 <author>The change author</author>
 <fi les>
 <fi le>
 <action>ADDED</action>
 <name>/path/to/fi le.txt</type>
 </fi le>
 </fi les>
 </changeSet>
 <changeSet>
 ...
 </changeSet>
 </changeSets>
 <complete>false</complete>
 <historyCheckpoint>new _TOKEN_</historyCheckpoint>
</history-response>

The “historyCheckpoint” element contains a string
indicating the latest checkpoint that this response
has information about.

The “complete” element may contain either “true”
or “false”. If “false” the appliance will process the
response and then immediately send a history re-
quest with the new historyCheckpoint. This should
be used to breakup huge histories.

Zero or one “changeSets” elements may be pres-
ent.

Zero or more “changeSet” elements may be pres-
ent.

The “id” is unique text (in the scope of a project)
that identifi es this history event.

The “date” element contains a xsd:dateTime for-
mated date.

The “comment” element contains text describing
the change, typically a check-in comment.

The “author” element identifi es the author of the
change.

Zero or one “fi les” elements may be present within
each “changeSet” element.

Zero or more “fi le” elements may be present within
the “fi les” element.

The “action” must be “Added”, “Removed” or “Up-
dated”.

The “name” element contains the path to the fi le
relative to the project root.

FILE RETRIEVAL COMPLETE notifi cation

Sent by the SCMI application to Krugle Enterprise after all the fi les from the last fi les request have been downloaded.
The SCMI must keep any fi le resources available until the fi le retrieval complete, update, or delete notifi cation comes. It
is important to assume that there will never be 2 Krugle Enterprise appliances asking for the same project at once. Some
SCMI implementations will involve locks on resources, so this notifi cation can be used as a trigger to unlock various ones.

Use UTF-8 encoding for all XML communications between Krugle Enterprise and the SCMI script.

Call
XML Comments

<?xml version=”1.0” encoding=”UTF-8”?>
<fi leRetrievalComplete-notifi cation version=”1”>
 <project>
 <serverUid>Server1</serverUid>
 <projectUid>Project1</projectUid>
 <location>svn://svn.host.net/repo</location>
 <params>u$3rn4m3 p4$$w0rd</params>
 </project>

</fi leRetrievalComplete-notifi cation>

Response
XML Comments

<?xml version=”1.0” encoding=”UTF-8”?>
<fi leRetrievalComplete-response version=”1”>
 <project>
 <serverUid>Server1</serverUid>
 <projectUid>Project1</projectUid>
 <location>svn://svn.host.net/repo</location>
 <params>u$3rn4m3 p4$$w0rd</params>
 </project>
</fi leRetrievalComplete-response>

10 | Krugle Enterprise SCMI Integration Guide

Krugle Enterprise SCMI Integration Guide | 11

DELETE notifi cation

This is a courtesy notifi cation from Krugle Enterprise to the SCMI application. This command is issued when Krugle
Enterprise has successfully completed the fi le / record crawl process. In a robust SCMI implementation, projects can
be deleted at any time to free up space, and they will be dynamically recreated upon a fi les or history request However
- it is still most effi cient to keep a project on the SCMI for every project which exists on a connected Krugle Enterprise
appliance, and this notifi cation type facilitates this synchronization.

Call
XML Comments

<?xml version=”1.0” encoding=”UTF-8”?>
<delete-notifi cation version=”1”>
 <project>
 <serverUid>Server1</serverUid>
 <projectUid>Project1</projectUid>
 <location>svn://svn.host.net/repo</location>
 <params>u$3rn4m3 p4$$w0rd</params>
 </project>
</delete-notifi cation>

Response
XML Comments

<?xml version=”1.0” encoding=”UTF-8”?>
<delete-response version=”1”>
 <project>
 <serverUid>Server1</serverUid>
 <projectUid>Project1</projectUid>
 <location>svn://svn.host.net/repo</location>
 <params>u$3rn4m3 p4$$w0rd</params>
 </project>
</delete-response>

12 | Krugle Enterprise SCMI Integration Guide

SCMI - XML Schema

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema” xmlns:jxb=”http://java.sun.com/xml/ns/
jaxb” jxb:version=”1.0”>
 <xsd:annotation>
 <xsd:documentation>
 blah blah blah
 </xsd:documentation>
 <xsd:appinfo>
 </xsd:appinfo>
 </xsd:annotation>
 <!-- Base Types -->
 <xsd:complexType name=”Project”>
 <xsd:sequence>
 <xsd:element name=”serverUid” type=”xsd:string” minOccurs=”1” maxOccurs=”1” />
 <xsd:element name=”projectUid” type=”xsd:string” minOccurs=”1” maxOccurs=”1” />
 <xsd:element name=”location” type=”xsd:string” minOccurs=”1” maxOccurs=”1” />
 <xsd:element name=”params” type=”xsd:string” minOccurs=”1” maxOccurs=”1” />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:simpleType name=”EventType”>
 <xsd:restriction base=”xsd:string”>
 <xsd:enumeration value=”Added” />
 <xsd:enumeration value=”Updated” />
 <xsd:enumeration value=”Removed” />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name=”FileURL”>
 <xsd:restriction base=”xsd:string”>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name=”MD5”>
 <xsd:restriction base=”xsd:string”>
 <xsd:length value=”32” />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name=”ChangeSets”>
 <xsd:sequence>
 <xsd:element name=”changeSet” type=”ChangeSet” minOccurs=”0” maxOccurs=”unbounded” />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name=”ChangeSet”>
<xsd:sequence>
 <xsd:element name=”id” type=”xsd:string” />
 <xsd:element name=”date” type=”xsd:dateTime” minOccurs=”1” maxOccurs=”1” />
 <xsd:element name=”comment” type=”xsd:string” minOccurs=”1” maxOccurs=”1” />
 <xsd:element name=”author” type=”xsd:string” minOccurs=”1” maxOccurs=”1” />
 <xsd:element name=”fi les” type=”Files” minOccurs=”0” maxOccurs=”1” />
 </xsd:sequence>

</xsd:complexType>
<xsd:complexType name=”Files”>
 <xsd:sequence>
 <xsd:element name=”fi le” type=”File” minOccurs=”0” maxOccurs=”unbounded” />
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name=”File”>
 <xsd:sequence>
 <xsd:element name=”action” type=”EventType” minOccurs=”1” maxOccurs=”1” />
 <xsd:element name=”name” type=”xsd:string” minOccurs=”1” maxOccurs=”1” />
 <xsd:element name=”url” type=”FileURL” minOccurs=”0” maxOccurs=”1” />
 <xsd:element name=”md5” type=”MD5” minOccurs=”0” maxOccurs=”1” />
 <xsd:element name=”revision” type=”xsd:string” minOccurs=”0” maxOccurs=”1” />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:simpleType name=”ErrorType”>
 <xsd:restriction base=”xsd:string”>
 <xsd:enumeration value=”generalError” />
 <xsd:enumeration value=”internalError” />
 <xsd:enumeration value=”invalidConfi guration” />
 <xsd:enumeration value=”invalidFilesCheckpoint” />
 <xsd:enumeration value=”invalidHistoryCheckpoint” />
 <xsd:enumeration value=”notReady” />
 <xsd:enumeration value=”outOfMemoryError” />
 <xsd:enumeration value=”protocolError” />
 <xsd:enumeration value=”protocolVersionError” />
 <xsd:enumeration value=”rebuildProject” />
 <xsd:enumeration value=”scmAuthenticationError” />
 <xsd:enumeration value=”scmConnectionError” />
 <xsd:enumeration value=”volumeFullError” />
 </xsd:restriction>
 </xsd:simpleType>
 <!-- Commands -->
 <xsd:element name=”fi les-request”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=”project” type=”Project” minOccurs=”1” maxOccurs=”1” />
 <xsd:element name=”lastFilesCheckpoint” type=”xsd:string” minOccurs=”0” maxOccurs=”1” />
 </xsd:sequence>
 <xsd:attribute name=”version” type=”xsd:int” use=”required” fi xed=”1” />
 </xsd:complexType>
 </xsd:element>
 <xsd:element name=”history-request”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=”project” type=”Project” minOccurs=”1” maxOccurs=”1” />
 <xsd:element name=”lastHistoryCheckpoint” type=”xsd:string” minOccurs=”0” maxOccurs=”1” />
 <xsd:element name=”lastFilesCheckpoint” type=”xsd:string” minOccurs=”1” maxOccurs=”1” />
 </xsd:sequence>
 <xsd:attribute name=”version” type=”xsd:int” use=”required” fi xed=”1” />
 </xsd:complexType>
 </xsd:element>

Krugle Enterprise SCMI Integration Guide | 13

<!-- Notifi cations -->
 <xsd:element name=”fi leRetrievalComplete-notifi cation”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=”project” type=”Project” minOccurs=”1” maxOccurs=”1” />
 </xsd:sequence>
 <xsd:attribute name=”version” type=”xsd:int” use=”required” fi xed=”1” />
 </xsd:complexType>
 </xsd:element>
 <xsd:element name=”delete-notifi cation”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=”project” type=”Project” minOccurs=”1” maxOccurs=”1” />
 </xsd:sequence>
 <xsd:attribute name=”version” type=”xsd:int” use=”required” fi xed=”1” />
 </xsd:complexType>
 </xsd:element>
 <!-- Commands Responses -->
 <xsd:element name=”history-response”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=”project” type=”Project” minOccurs=”1” maxOccurs=”1” />
 <xsd:element name=”changeSets” type=”ChangeSets” minOccurs=”0” maxOccurs=”1” />
 <xsd:element name=”complete” type=”xsd:boolean” minOccurs=”1” maxOccurs=”1” />
 <xsd:element name=”historyCheckpoint” type=”xsd:string” minOccurs=”1” maxOccurs=”1” />
 </xsd:sequence>
 <xsd:attribute name=”version” type=”xsd:int” use=”required” fi xed=”1” />
 </xsd:complexType>
 </xsd:element>
 <xsd:element name=”fi les-response”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=”project” type=”Project” minOccurs=”1” maxOccurs=”1” />
 <xsd:element name=”fi les” type=”Files” minOccurs=”0” maxOccurs=”1” />
 <xsd:element name=”fi lesCheckpoint” type=”xsd:string” minOccurs=”1” maxOccurs=”1” />
 </xsd:sequence>
 <xsd:attribute name=”version” type=”xsd:int” use=”required” fi xed=”1” />
 </xsd:complexType>
 </xsd:element>
 <xsd:element name=”error-response”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=”errorType” type=”ErrorType” minOccurs=”1” maxOccurs=”1” />
 <xsd:element name=”description” type=”xsd:string” minOccurs=”1” maxOccurs=”1” />
 </xsd:sequence>

 <xsd:attribute name=”version” type=”xsd:int” use=”required” fi xed=”1” />
 </xsd:complexType>
 </xsd:element>

14 | Krugle Enterprise SCMI Integration Guide

Krugle Enterprise SCMI Integration Guide | 15

<!-- Notifi cations Responses -->
 <xsd:element name=”fi leRetrievalComplete-response”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=”project” type=”Project” minOccurs=”1” maxOccurs=”1” />
 </xsd:sequence>
 <xsd:attribute name=”version” type=”xsd:int” use=”required” fi xed=”1” />
 </xsd:complexType>
 </xsd:element>
 <xsd:element name=”delete-response”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=”project” type=”Project” minOccurs=”1” maxOccurs=”1” />
 </xsd:sequence>
 <xsd:attribute name=”version” type=”xsd:int” use=”required” fi xed=”1” />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

SCMI Error Handling
The SCMI module can return an error response to any request made by Krugle Enterprise. Several common error
conditions are already defi ned, and some may trigger different behavior from Krugle Enterprise. This error handling helps
ensure that Krugle Enterprise logging, error reporting and administrator notifi cation swiftly and accurately dispatch the
proper resources to remedy network, authentication and SCMI host processing issues that will adversely affect Krugle
Enterprise operation.

Error handling

The following table summarizes the Krugle XML Schema ErrorType. Each error specifi ed in the SCMI application must
identify the error as one of the following types:

Error Description Krugle Enterprise Behavior
generalError A general error type. As a response to a fi les request, it

puts the project in an error state. As
a response to a history request or
notifi cation, it is merely logged.

internalError Any error that occurs due to the SCMI application
or any tool external to the Krugle Enterprise Appli-
ance.

Same as generalError.

invalidConfi guration The contents of the “location” or “params” element,
as provide in the project confi guration in the Appli-
ance, is not valid or otherwise does not match what
the SCMI is expecting.

Same as generalError.

invalidFilesCheckpoint The fi lesCheckpoint given in a fi les request or his-
tory request is invalid.

Same as generalError.

Error handling table continued on next page

16 | Krugle Enterprise SCMI Integration Guide

Error handling table continued from previous page

Error Description
invalidHistoryCheckpoint The historyCheckpoint given in a history request is

invalid.
Same as generalError.

notReady The SCMI is busy doing something, and isn’t ready to
handle a command. This will NOT cause an error con-
dition, but the crawl will be canceled for this project.

The crawl for this project is can-
celed but no error is registered.

outOfMemoryError If the SCMI box runs out of memory trying to fulfi ll the
request.

Same as generalError.

protocolVersionError Unexpected protocol version. Same as generalError, as there is
only one protocol version right now.

protocolError Anything else unexpected in the protocol. This would
be considered a critical error as retrying the command
would not be expected to have a different result. For
example, invalid XML, unknown XML entities.

Same as generalError.

rebuildProject Thrown if the SCMI wants KE to rebuild its fi les index
by requesting all the fi les and history again.

The project is scheduled to be
rebuilt as soon as the current snap-
shot fi nishes.

scmAuthenticationError Thrown if the SCMI cannot authenticate to a remote
SCM.

Same as generalError.

scmConnectionError Thrown if the SCMI cannot connect to a remote SCM. Same as generalError.

volumeFullError Thrown if the SCMI box runs out of disk space trying to
fulfi ll the request.

Same as generalError.

Error Response

XML Comments
<?xml version=”1.0” encoding=”UTF-8”?>
<error-response version=”1”>
 <errorType>Internal Error</errorType>
 <description>
 This would be some text like: Out-of-disk-space
retrieving fi les. Or a Java exception trace
 </description>
</error-response>

The “errorType” must be one of
the values specifi ed in Krugle XML
Schema ErrorType.

The “description” is arbitrary text
provided by the SCMI.

Krugle Inc., 200 Middlefield Road, Suite 104, Menlo Park, Ca 94025 Phone: 650.853.1986 www.krugle.com

